

System Compatibility

LED Street Lights

Tom Geist
Senior Project Manager

Municipal Consortium Southwest
Region Workshop
September 30, 2010, Los Angles,
California

Birds are Compatible...(Mostly)

Cars are Not!

What About LED Street Lights?

Agenda

- The importance of LED street lights and system compatibility
- Information on EPRI
- Three criteria for system compatibility
 - -Function, survive, no side effects
- Answers to some basic questions
- Where do we go from here...

Point #1 ... It Matters!

Our future depends on it.

Potential savings of 4,500 MWh per year.*

Equivalent to seven 1,000 MW power plants

Equivalent to 3.7 million households

^{*}Assumes 100% installed base. Source: <u>Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications</u>, U.S. Department of Energy, September 2008.

Its Your Money...

- Mayor cuts pay of Albuquerque cops...
- Philadelphia mayor cuts 2010 budget, city jobs...
- Kansas City Braces for School Closings, Budget Cuts...

 Mayor Nutter Signs Legislation, Announces Measures to Increase Energy Efficiency and Save Money

It's Your Industry...

In 1938 the first mercury vapor streetlights were installed...

Light Source	Percentage	Number of Street and Area Lights
Incandescent	2	3,159,000
Halogen Quartz	8	9,917,000
Fluorescent	6	7530,000
Mercury Vapor	13	17,675,000
Metal Halide	27	38,330,000
High Pressure Sodium	39	54,754,000
Total	100	131,356,000

... and many are still there.

Source: <u>Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications</u>. U.S. Department of Energy, September 2008.

Its Your Career...

LED Fixture remorse

...don't let this happen to you.

Failure Leads To...

- Lost jobs
- Lost revenue
- Lost opportunity for energy savings.

Our History...

- Founded by and for the electricity industry in 1973
- Independent, nonprofit center for public interest energy and environmental research
- Collaborative resource for the electricity sector
- Major offices in Palo Alto, CA;
 Charlotte, NC; Knoxville, TN
 - Laboratories in Knoxville,
 Charlotte and Lenox, MA

Our Role...

Help Move Technologies to the Commercialization Stage...

Technology Accelerator!

How Did We Obtain Our Expertise?

- Began Building Knowledge Base in mid-1990s
- We've Performed System Compatibility Walkthroughs and Audits Worldwide
- Performed Hundreds of On-Site Tests of Machines and Process Equipment in many industries.
- Years of collaboration with Utilities, industry and equipment providers
- Active in development of System Compatibility and Power Quality Standards

PLCs

Motor Starters

EPEI RESEARCH INSTITUTE

Get the Book

Free download: http://www.pueblo.gsa.gov/cic_text/housing/surge/surge.pdf

Get the Green Book

Chapter 3.

Three Criteria for System Compatibility

Equipment Must:

- Function as intended
- Survive the electrical environment
- No side effects to equipment or environment

Generic Schematic

Function as intended

Survive the electrical environment

No side effects to equipment or environment

PFC = power factor correction

PWM = pulse width modulation

Driver Performance

Function as intended
 Survive the electrical environment
 No side effects to equipment or environment

- In addition to lighting performance, what about driver performance?
 - Reliability
 - Output regulation
 - Output ripple (either current or voltage)
 - Transient operation (on/off)
 - Steady-state overvoltage and undervoltage
 - Efficiency
 - Temperature

"The driver consists of power electronics used to shape utility supplied voltage and current into a form compatible with LEDs."

The Fixture Goes Where?

Function as intended

Survive the electrical environment

No side effects to equipment or environment

Direct Lightning Strike

- 13.2 kV Primary Distribution Line
- Resulted in fault and conductor burn down
- Sustained interruption of several hours

10 19:04

Photograph courtesy of Niagara Mohawk

Function as intended

Survive the electrical environment

No side effects to equipment or environment

Electrical Disturbance Cause of Disturbance

Impulsive Transients (Surges) Oscillatory	 motors in air conditioners, HVAC equipment, elevators, water coolers, fans lightning photocopiers and laser printers static discharge routine utility activity electronic air ionizers kitchen appliances
Noise	HVAC equipment kitchen appliances radios, telephones light dimmers Overhead Lines electronic lighting Building Transformers electronic air ionizers vacuum cleaners
/ Harmonic Distortion	 computers televisions, video cassette recorders electronic lighting

Function as intended

Survive the electrical environment

Electrical Disturbance	Cause of Disturbance
√√√√√√ Sag	 motors in air conditioners, HVAC equipment, elevators, water coolers, fans photocopiers and laser printers routine utility activities
√/√/√ Swell	 motors in air conditioners, HVAC equipment, elevators, water coolers, fans photocopiers and laser printers
√√√√√ Undervoltage	 improper wiring and grounding improper voltage tap adjustment defective building transformer
√√√√√ Overvoltage	improper wiring and grounding improper voltage tap adjustment defective building transformer crossed power lines
√√ Interruption	lightning tripped circuit breaker, blown fuse downed power lines

Function as intended

Survive the electrical environment

Function as intended

Survive the electrical environment

No Side Effects

Function as intended

Survive the electrical environment

No Side Effects

Function as intended

Survive the electrical environment

No side effects to equipment or environment

"We All Have to Play in the Same Wave Pool"

EMS = Energy Management System, PV = Photovoltaics

Frequencies of Interest...

Function as intended

Survive the electrical environment

No side effects to equipment or environment

Small Signal

Source	Frequency (MHz)	Output Power (W)	Estimated Field Strength (V/m)†
Paging Transmitters	49	250	110*
Walkie-Talkies	27, 49, 145, 450	5	15*
State Police Radio	39	100	40
	174–216	0.8 μW	0.006*
Biomedical Telemetry	460–470	0.002	0.3*
	512–566	0.1 μW	0.002*
Mobile Radios	440–470	25	35*
Police/Ambulance	400–900	10–100	22–70*
Wireless LANs	912	0.1	2.2
Personal Digital Assistants	896–940	4	14
Radio Modems	896–901	10	22
Cellular Telephones	800–900	0.6–3	5.4–12
Personal Com. Service	1850–1950	0.2	3

[†]Measured at one meter.

Source: Association for the Advancement of Medical Instrumentation, *Guidance on Electromagnetic Compatibility of Medical Devices for Clinical/Biomedical*, Technical Information Report AAMI TIR No. 18—1997.

^{*}Distance is within the "near field," which includes an electric field and magnetic field.

Frequencies of Interest...

Function as intended

Survive the electrical environment

No side effects to equipment or environment

Large Signal

Source	Frequency (MHz)	Maximum Licensed Radiated Power (W)	Estimated Field Strength (V/m)†
Amateur Radio	1.8 MHz-300 GHz	1,500	0.1*
AM Radio Broadcast	0.535-1.705	50,000	0.7*
FM Radio Broadcast	88–108	100,000	0.9
TV Channels 2–6	2, 3, 4: 54–72	100.000	0.9
1 V Chamileis 2–0	5 and 6: 76–88	100,000	0.9
TV Channels 7–13	174–216	316,000	1.7
TV Channels 14-69	470–806	5,000,000	6.7

[†]Measured at one kilometer.

*Field strength may be greater if directional antennas are used. Source: Association for the Advancement of Medical Instrumentation, *Guidance on Electromagnetic* Compatibility of Medical Devices for Clinical/Biomedical, Technical Information Report AAMI TIR No. 18—1997.

A Quick Story...

Function as intended

Survive the electrical environment

No side effects to equipment or environment

"We need to remember the lessons learned from our experience with compact fluorescents."

Case Study - Emissions

Function as intended

Survive the electrical environment

No side effects to equipment or environment

Can I Still Use
My HAM
Radio?
Maybe Not...

Use of Ultrasonic Detector to Locate Noisy Distribution Hardware

LED Fixture Found to be the Problem

How to Fix It...

Ferrite Cores...

- Electromagnetic Interference (EMI/RFI)
 - Two types: conducted and radiated
 - Source: Power electronics such as an LED driver that use high-speed switches to increase efficiency.
 - The rapid on/off transition of the insulated gate bipolar transistors (IGBTs) generates a broad spectrum of electromagnetic energy
 - Several manufacturers have recognized their fixture as a potential source for interference and have taken preventative steps (ferrite cores).

EMI – Electromagnetic interference, RFI – Radio Frequency Interference

Why Now?

- Street lights have been around a long time...
 - Magnetic ballast
 - Photocells
 - We've had problems in the past

Magnetic Ballast

Photocell

Can't I Just Install a Surge Protection Device?

Yes, but...

- Which type?
- What should be the rating?
- How will it interact with other nearby surge protection devices?

Letting Out the Smoke

Types of Line Flashovers

(a) Direct strike flashover

(b) Induced Flashover Due to Nearby Strike (electric and magnetic fields of nearby lightning create a voltage surge on line)

(c) Back-flashover: a strike to the grounded shield wire causes the local ground potential to rise resulting in flashover from pole grounding wire to phases

Flash Density History

Important for Determining Risk Assessment and Protection Design and Calculations

Methods of Protection

How Do I Define the Environment?

- 1. Use existing standards to the extend possible
- 2. Laboratory testing
- 3. Site monitoring
- 4. Forensic analysis

Standards for Immunity

Immunity	
Voltage sags/dips and momentary interruptions (cycles to seconds)	ITIC Curve; SEMI F47 Curve; IEC 61000-4-11, 61000-4-14, and 61000-4-34
Low RMS variations (seconds to minutes)	ITIC Curve, SEMI F47 Curve, ANSI/IEEE C84.1
Steady-state voltage variations	ANSI/IEEE C84.1
Voltage swells	ITIC Curve
Voltage unbalance	NEMA MG-1, ANSI/IEEE C84.1, IEC 61000-4-27
Voltage distortion	IEEE 519
Common mode noise	IEEE P-1100
Normal mode noise	IEEE P-1100
Switching transients	IEEE C62.45, IEC 61000-4-4 and 61000-4-5
RFI	IEC 61000-4-3, 61000-4-6
Frequency variation	IEC 61000-4-28

Standards for Emissions, Survivability and Other

Emissions	
Current distortion	IEEE 519, IEC 61000-3-2 and 61000-3-4
Flicker	IEEE 1453; IEEE 141; IEC 61000-3-3, 61000-3-7, and 61000-3-11
Low-frequency magnetic fields	IEC 61000-2-7
Survivability	
Lightning transients	UL 1449, IEEE C62.45, IEC 61000-4-5
Overvoltage	ANSI/IEEE C84.1
All Types	
Event quantification	IEEE 1159, IEC 61000-4-30

IEEE Surge Protective Devices Committee

- Meeting schedule and logistics can be found at: http://grouper.ieee.org/grouper/
- For more info contact Doug Dorr
 ddorr@epri.com
 407-787-0202

What Can I Do?

The Road to Compatibility

- 1. Define the environment
- 2. Establish emission criteria
- 3. Establish immunity criteria
- 4. Develop test and measurement procedures
- 5. Conduct product characterizations in cooperation with manufacturers
- 6. Design product improvements (manufacturers)

Summary

Remember

- LEDs are part of the solution to a big problem. It's worth it.
- Its your money, your industry and your career. Get it right.
- The use of power electronics on the distribution line is new. Don't forget about the driver.
- Defining the electrical environment and then testing for compatibility will enable success. More work is needed in this area – define then test.

"A magnetic ballast is inherently robust. Electronic ballasts and drivers are not."

The Real World

Artist: Jack Davis

Question...

•What sort of failures are we seeing now?

Together...Shaping the Future of Electricity